Spontaneous aggregation of the insulin-derived steric zipper peptide VEALYL results in different aggregation forms with common features.

نویسندگان

  • Dirk Matthes
  • Venita Daebel
  • Karsten Meyenberg
  • Dietmar Riedel
  • Gudrun Heim
  • Ulf Diederichsen
  • Adam Lange
  • Bert L de Groot
چکیده

Recently, several short peptides have been shown to self-assemble into amyloid fibrils with generic cross-β spines, so-called steric zippers, suggesting common underlying structural features and aggregation mechanisms. Understanding these mechanisms is a prerequisite for designing fibril-binding compounds and inhibitors of fibril formation. The hexapeptide VEALYL, corresponding to the residues B12-17 of full-length insulin, has been identified as one of these short segments. Here, we analyzed the structures of multiple, morphologically different (fibrillar, microcrystal-like, oligomeric) [(13)C,(15)N]VEALYL samples by solid-state nuclear magnetic resonance complemented with results from molecular dynamics simulations. By performing NHHC/CHHC experiments, we could determine that the β-strands within a given sheet of the amyloid-like fibrils formed by the insulin hexapeptide VEALYL are stacked in an antiparallel manner, whereas the sheet-to-sheet packing arrangement was found to be parallel. Experimentally observed secondary chemical shifts for all aggregate forms, as well as Ø and ψ backbone torsion angles calculated with TALOS, are indicative of β-strand conformation, consistent with the published crystal structure (PDB ID: 2OMQ). Thus, we could demonstrate that the structural features of all the observed VEALYL aggregates are in agreement with the previously observed homosteric zipper spine packing in the crystalline state, suggesting that several distinct aggregate morphologies share the same molecular architecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insight into the Stability of Cross-β Amyloid Fibril from VEALYL Short Peptide with Molecular Dynamics Simulation

Amyloid fibrils are found in many fatal neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, type II diabetes, and prion disease. The VEALYL short peptide from insulin has been confirmed to aggregate amyloid-like fibrils. However, the aggregation mechanism of amyloid fibril is poorly understood. Here, we utilized molecular dynamics simulation to analyse the stability of ...

متن کامل

Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligom...

متن کامل

Inhibition of insulin fibrillogenesis with targeted peptides.

Under conditions of acidic pH and elevated temperature, insulin partially unfolds and aggregates into highly structured amyloid fibrils. Aggregation of insulin leads to loss of activity and can trigger an unwanted immune response. Compounds that prevent protein aggregation have been used to stabilize insulin; these compounds generally suppress aggregation only at relatively high inhibitor conce...

متن کامل

Driving forces and structural determinants of steric zipper peptide oligomer formation elucidated by atomistic simulations.

Understanding the structural and energetic requirements of non-fibrillar oligomer formation harbors the potential to decipher an important yet still elusive part of amyloidogenic peptide and protein aggregation. Low-molecular-weight oligomers are described to be transient and polymorphic intermediates in the nucleated self-assembly process to highly ordered amyloid fibers and were additionally ...

متن کامل

Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro

Objective(s):Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. One of the hallmarks of AD is an abnormal accumulation of fibril forms of tau protein which is known as a microtubule associated protein. In this regard, inhibition of tau aggregation has been documented to be a potent therapeutic approach in AD and tauopathies. Unfortunately, the available syntheti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 426 2  شماره 

صفحات  -

تاریخ انتشار 2014